

Karsten W. Jacobsen

CAMD, Dept. of Physics

Technical University of Denmark

The machine is potentially much faster than quantum mechanics.

Maybe we can also understand something new from the machine?

Overview

- Computational screening
 - Descriptors
 - How to search?
 - Databases
 - Brute force calculations
 - Machine learning
 - Fitting a function
 - Bayesian inference
 - Gaussian processes and kernel regression
- Machine learned exchange-correlation functionals

Computational Materials Design Descriptors

"Real material"

What do we want:

- Battery: High power, rechargeability, long lasting...
- Chemical reactor: High Turn-Over-Frequency...
- Structural material: High strength, ductility...
- Solar cell: High solar to electrical energy conversion efficiency
- Photoelectrochemical cell: High solar to fuel conversion efficiency

What can we compute at the electronic/atomic level? "Descriptors"!

Computing

Ashby diagrams

"Materials Selector"

Great variety of materials Multi-dimensionality Known materials

(1992)

Multiscale modeling: Microkinetics Ammonia synthesis

 $N_2 + 3H_2 \rightarrow 2NH_3$

Descriptors: Adsorption energies and reaction barriers Multiscale modeling: Microkinetics

Number of descriptors can be reduced using scaling relations: the energy barrier scales with the binding energy Vojvodic, Medford, Studt, Abild-Pedersen, Khan, Bligaard, and Nørskov, *Chemical Physics Letters*, **598**, 108 (2014)

Combined Electronic Structure and Evolutionary Search Approach to Materials Design

	AlNi ₃	-0.49
Superalloys	Ni ₃ Ti	-0.46
 Mechanical strength 	HfNi ₃	-0.44
 Resistance to thermal creep 	Al ₂ Ti ₂	-0.43
Surface stability	Al ₃ Sc	-0.43
 Resistance to corrosion and oxidation 	Al ₂ Zr ₂	-0.42
	Al ₂ ZnZr	-0.42
Descriptor	Al ₂ Sc ₂	-0.41
 Try alloy heat of formation 	Ni ₃ Sc	-0.41
Thy alloy field of formation	Al ₃ Zr	-0.40
	Al ₂ TiZn	-0.39
	Al ₂ ScZn	-0.38
	Al ₃ Ti	-0.38
	Co ₃ Ti	-0.38
	Ni ₃ Zr	-0.36
	Al ₂ NbTi	-0.36
	Al ₂ CuTi	-0.35
G. Johannesson, Thomas Bligaard, A. Ruban, H. L. Skriver, K. W. Jacobson, and J. K. Narakov, Phys. Rev. Lett. 99 , 255506 (2002)	Al ₂ HfZn	-0.34
T. Bligaard, G. Johannesson, A. V. Ruban, H. L. Skriver,	Al ₂ CuZr	-0.34
K. W. Jacobsen, and J. K. Nørskov, Appl. Phys. Lett. (2003)	Al ₃ Lu	-0.34

Light-induced water splitting

- Stability of material
 - Heat of formation
- Good light absorption
 - Bandgap in the visible range
- Photogenerated charges at right potentials
 - Band edges straddle the water redox potentials

Principle of water splitting using semiconductor photocatalysts.

Overview

- Computational screening
 - Descriptors
 - How to search?
 - Databases
 - Brute force calculations
 - Machine learning
 - Fitting a function
 - Bayesian inference
 - Gaussian processes and kernel regression
 - Neural nets
- Machine learned exchange-correlation functionals

"Standard" material quantities now available in public computational databases

J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM, vol. 65, no. 1, pp. 1501–1509, Nov. 2013.

Computational Databases

- OQMD ICSD + specific structures
- Materials Project ICSD, project specific
- AFLOWLIB ICSD, project specific
- NOMAD Repository store everything
- AiiDA
- CatApp/CatMap

. . .

 Computational Materials Repository (CMR) ...

- Several experimental databases
 - Inorganic Crystal Structure Database (ICSD)

Now more than 49 million calculations in NOMAD

Number of calc. in NOMAD

Principle of water splitting using semiconductor photocatalysts.

Brute force screening: Water splitting

- Stability
 - Heat of formation
- Good light absorption
 - Bandgap in the visible range
- Photogenerated charges at right potentials
 - Band edges straddle the water redox potentials

5 atom unit cell

Perovskites

ABO₃

Oxides, oxynitrides, oxysulfides, oxyfluorides, oxyfluornitrides

Materials candidates:

- ABO₃ 10 4 known, 6 unknown
- ABO₂N 5 4 known, 1 unknown
- ABON₂ 2 LaTaON₂ (known) YTaON₂ (unknown)

0

- ABN₃ 0
- ABO₂S 0
- ABO₂F 3
- ABOFN

~19000 materials

About half are known

(Castelli, Landis, Thygesen, Dahl, Chorkendorff, Jaramillo, Jacobsen, Energy Environ Sci 5, 9034 (2012))

More "intelligent" searches

DTU

Correlation is the key

Information transfer: From oxides to oxynitrides

Probability for an element to generate a stable semiconductor for the ABO₃ stoichiometry

Ranking of oxynitrides

Probabilities and rules transferable to oxynitrides:

Sum of valences = 0

$$\tilde{P}(ABO_2N) = P_A(A)P_B(B)P_{rules}(ABO_2N)$$

Castelli and Jacobsen,

Modelling Simul. Mater. Sci. Eng. 22, 055007 (2014)

14 out of 16 compounds quickly identified

A-ion	B-ion	Stable?	Gap [eV]	A-ion	B-ion	Stable?	Gap [eV]
Ca	Ta	~	2.2	(cont.)			
\mathbf{Sr}	Ta	\checkmark	2.1	In	Hf		0
Ca	Nb	\checkmark	1.4	La	Sn		1.8
\mathbf{Sr}	Nb	\checkmark	1.4	In	Ti		0
Ba	Ta	\checkmark	2.0	La	Ge		0
Ba	Nb	\checkmark	1.3	Υ	Zr		3.3
La	\mathbf{Zr}	\checkmark	3.4	Ge	Ta		1.8
La	Hf	\checkmark	3.8	Ge	Nb		1.1
La	Ti	\checkmark	2.5	Υ	Hf		3.4
Sn	Ta	\checkmark	1.2	In	Sn		0
Sn	Nb	\checkmark	0.5	Υ	Ti		2.4
Pb	Ta	\checkmark	2.0	Sn	$^{\rm Sb}$		0
Pb	Nb	\checkmark	1.3	Pb	$^{\rm Sb}$		0
\mathbf{Sr}	Sb		0	Sn	V		0
Ca	Sb		0	Pb	V		0
\mathbf{Sr}	V		0	In	Ge		0
Ca	V		0	Mg	$^{\rm Sb}$		0
In	Zr		0	Mg	V		0
Mg	Ta	\checkmark	2.1	Υ	Sn		2.7
Mg	Nb		1.5	Υ	Ge		1.3
Ba	Sb		0	Ge	$^{\rm Sb}$		0
Ba	V		0	Ge	V		0

Machine learning Kernel regression

Fitting a function f(x) based on data points $y_i = f(x_i)$

Drop a Gaussian on each data point:

$$k(x, x_i) = \exp(-|x - x_i|^2 / 2\rho^2)$$

Interpolation:

$$y(x) = \sum_{i} k(x, x_i) \alpha_i$$

Coefficients determined by data points:

$$y_j = \sum_i k(x_j, x_i) \alpha_i = \sum_i K_{ji} \alpha_i \to \mathbf{y} = \mathbf{K} \boldsymbol{\alpha} \to \boldsymbol{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$

Interpolation: $y(x) = \mathbf{k}^T \mathbf{K}^{-1} \mathbf{y}$

with
$$k_i = k(x, x_i)$$

Machine learning Kernel ridge regression

Fitting a function f(x) based on data points $y_i = f(x_i)$

Drop a Gaussian on each data point:

y

$$k(x, x_i) = \exp(-|x - x_i|^2 / 2\rho^2)$$

Interpolation:

$$(x) = \sum_{i} k(x, x_i) \alpha_i$$

Coefficients determined by data points:

$$y_j = \sum_i k(x_j, x_i) \alpha_i = \sum_i K_{ji} \alpha_i \to \mathbf{y} = \mathbf{K} \boldsymbol{\alpha} \to \boldsymbol{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$

Noise in data or problem inverting K:

$$\mathbf{K} \to \mathbf{K} + \lambda \mathbf{I}$$

Small regularization parameter

Example: Local structure optimization of atomic systems

DTU

- Multidimensional local optimization
- A number of well-developed techniques are available: Conjugate Gradients, BFGS, ···
- Takes up a large fraction of CPU hours on supercomputers performing electronic structure calculations

(Estefanía Garcia del Río, Jens Jørgen Mortensen, KWJ, arXiv:1808.08588 [physics.comp-ph])

Prediction of potential energy surface:

J. Wu, M. Poloczek, A. G. Wilson, and P. I. Frazier. arXiv:1703.04389 Applied to Nudged Elastic Band simulations: O.-P. Koistinen, F. B. Dagbjartsdóttir, V. Ásgeirsson, A. Vehtari, and H. Jónsson, *J Chem Phys*, **147**, 152720 (2017)

Optimization algorithm

- Choose initial structure
- Predict energy surface based on previous structures
- Find minimum structure on predicted energy surface using BFGS (a standard optimizer)
- Calculate energy and forces at the predicted minimum point with DFT

Test case: 10 atom Au cluster

10 atom Au cluster with Effective Medium Theory interatomic potential.

DTU

1000 energy minimizations with different initial conditions.

"Standard" test systems from ASE

Cu slab

Cu bulk

DTU

Test results for optimizers in ASE with standard settings

10 minimizations for each system

GPAW calculations using LCAO basis set

Available in ASE now!

Bayes' theorem

Thomas Bayes

(1701 - 1761)Laplace Turing

Probability theory: P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Bayes theorem:

$$P(A|B) = \frac{1}{P(B)}P(B|A)P(A)$$

Inference:

$$P(\text{cause}|\text{effect}) = \frac{1}{P(\text{effect})}P(\text{effect}|\text{cause})P(\text{cause})$$

Example: Disease (D) and test (T) 1/1000 of the population has the disease: P(D) = 0.001, $P(\neg D) = 0.999$ The test is 99% good: $P(T|D) = P(\neg T|\neg D) = 0.99$

 $P(T|\neg D) = P(\neg T|D) = 0.01$

You get a positive test. What is the risk you have the disease P(D|T)?

1% 10% 50% 90% 99%

Bayes' theorem

Thomas Bayes

(1701 - 1761)Laplace Turing

Probability theory: P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Bayes theorem:

 $P(A|B) = \frac{1}{P(B)}P(B|A)P(A)$

Inference:

$$P(\text{cause}|\text{effect}) = \frac{1}{P(\text{effect})}P(\text{effect}|\text{cause})P(\text{cause})$$

Example: Disease (D) and test (T) 1/1000 of the population has the disease: P(D) = 0.001, $P(\neg D) = 0.999$ The test is 99% good: $P(T|D) = P(\neg T|\neg D) = 0.99$ $P(T|\neg D) = P(\neg T|D) = 0.01$

You get a positive test. What is the risk you have the disease P(D|T)?

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)} = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|\neg D)P(\neg D)}$$
$$= \frac{0.99 * 0.001}{0.99 * 0.001 + 0.01 * 0.999} = 0.09 = 9\%$$

Bayesian Search Theory in Practice The 1966 Palomares B-52 crash

B-52G collided with KC-135 tanker when fueling

4 H-bombs dropped 3 on land 1 in the Mediterranean Sea

Bayesian search theory applied: Assign probabilities to different areas of the sea based on available information (a local fisherman saw the bomb dropping) Update your probability depending on your search.

Bomb recovered

Example: heads and tails

Model: Probability p for heads

Data: h heads and t tails

 $P(\text{Model}|\text{Data}) = \frac{1}{P(\text{Data})} P(\text{Data}|\text{Model}) P(\text{Model})$ $P(p|h,t) \propto P(h,t|p) P(p) = \frac{(h+t+1)!}{h!t!} p^h (1-p)^t$ $\text{Average value of } p: \quad \langle p \rangle = \frac{h+1}{(h+1)+(t+1)}$

Binomial distribution of *h* and *t* given parameter *p*

Conjugate distribution: Beta distribution of *p* given parameters *h* and *t*

$$P(\text{Model}|\text{Data}) = \frac{1}{P(\text{Data})}P(\text{Data}|\text{Model})P_0(\text{Model})$$

Data: $\{y_i\}$ Model parameters: aPredictions by model: $y_i(a)$

Likelihood with Gaussian noise in the data: $P(\{y_i\}|a) \propto \exp\left(-\sum_i (y_i - y_i(a))^2/2\sigma^2\right)$

Prior:
$$P_0(a) \propto \exp\left(-R(a)\right) \propto \exp\left(-\lambda |a|^{1 \text{ or } 2}\right)$$

Posterior:
$$P(a|\{y_i\}) \propto \exp\left(-\sum_i (y_i - y_i(a))^2/2\sigma^2 - R(a)\right) = \exp(-C(a))$$

Gaussian Processes

Consider just two data points: y_1, y_2

Prior probability:

The two points are Gaussian distributed with zero mean and some correlation between them:

$$\langle y_1^2 \rangle = \sigma^2, \ \langle y_2^2 \rangle = \sigma^2, \ \langle y_1 y_2 \rangle = \tau^2 \ or \ \langle \mathbf{y} \mathbf{y}^{\mathbf{T}} \rangle = \begin{pmatrix} \sigma^2 & \tau^2 \\ \tau^2 & \sigma^2 \end{pmatrix} \equiv \mathbf{K}$$

This corresponds to the probability distribution:

$$P_0(y_1, y_2) = \frac{1}{\sqrt{2\pi det(\mathbf{K})}} \exp\left(-\frac{1}{2}\mathbf{y}^{\mathbf{T}}\mathbf{K}^{-1}\mathbf{y}\right)$$

 $P(y_1, y_2)$

No correlation

Strong correlation

Gaussian Processes

Now we get the information that y_1 actually has the value y_1^0

What is then the probability distribution for y_2 ?

$$P(y_2) \propto \int dy_1 \delta(y_1 - y_1^0) P_0(y_1, y_2) = P_0(y_1^0, y_2) \propto \exp\left[-\frac{1}{2(\sigma^2(1 - (\tau/\sigma)^4))} \left(y_2 - \left(\frac{\tau}{\sigma}\right)^2 y_1^0\right)^2\right]$$

A new Gaussian!

$$\langle y_2 \rangle = \left(\frac{\tau}{\sigma}\right)^2 y_1^0$$

Mean:

Width:

$$\langle (y_2 - \langle y_2 \rangle)^2 \rangle = \sigma^2 (1 - (\tau/\sigma)^4)$$

 $P(y_1, y_2)$

No correlation

Gaussian Processes

Now consider N data points: $\mathbf{y}^T = (y_1, y_2, \dots, y_N)$

Prior probability: Gaussian with zero mean

$$\langle \mathbf{y} \rangle = 0, \ \langle \mathbf{y} \mathbf{y}^T \rangle \equiv \mathbf{K} \ i.e. \ P_0(\mathbf{y}) = \frac{1}{\sqrt{2\pi det(\mathbf{K})}} \exp\left(-\frac{1}{2}\mathbf{y}^T \mathbf{K}^{-1} \mathbf{y}\right)$$

Now we come with a new data point y_{N+1} , $\mathbf{y}_{N+1}^T = (y_1, y_2, \dots, y_N, y_{N+1})$ And again we assume a Gaussian distribution: $\langle \mathbf{y_{N+1}} \ \mathbf{y_{N+1}^T} \rangle = \begin{pmatrix} \mathbf{K} & \mathbf{k} \\ \mathbf{k} & c \end{pmatrix}$

Given that the first N data points take the values y^0 we can now update our probability distribution and determine, that the last data point is Gaussian distributed with

$$\langle y_{N+1} \rangle = \mathbf{k}^T \mathbf{K}^{-1} \mathbf{y}^0 \qquad \langle (y_{N+1} - \langle y_{N+1} \rangle)^2 \rangle = c - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k}$$

The same formula for the mean as the simple fitting with superposed Gaussians! New meaning to the kernel K: A measure of correlations. Data which are "similar" or "close" have high correlation.

Fitting a function The prior distribution

Functions on the interval [0,1]:

Kernel function

$$K_{ij} = \langle y(x_i)y(x_j) \rangle = k(x_i, x_j) = \exp(-|x_i - x_j|^2/2\rho^2)$$

Prior distribution:

$$P_0(\mathbf{y}) = \frac{1}{\sqrt{2\pi det(\mathbf{K})}} \exp\left(-\frac{1}{2}\mathbf{y}^{\mathbf{T}}\mathbf{K}^{-1}\mathbf{y}\right), \ \mathbf{y}^T = (y(x_1), y(x_2), \dots, y(x_N))$$

Fitting a function

The value of $ho\,$ can be addressed by so-called cross validation

Back to water splitting with machine learning

About 19000 cubic perovskites oxides, oxynitrides, oxysulfides, oxyfluorides, oxyfluornitrides

Fingerprint (x-vector):

$$x(SrTaO_2N) = (5, 2, 6, 5, 2, 1, 0, 0)$$

O, N, S, F

Sr "coordinates"

Kernel function:

$$k(x_i, x_j) = \exp(-|x_i - x_j|^2/2\rho^2)$$

н																	He
Li	Be		(5	,2)								В	С	N	0	F	Ne
Na	Mg		/									AI	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	H۴	Та	W	Re	Os	lr	Pt	Au	Hg	τı	Pb	Bi	Po	At	Rn

Water splitting Gaussian process

Training on 500 perovskites (~2.6 % of the total dataset).

Example: Heat of formation

Mean Absolute Error: 0.28 eV Mean Absolute Predicted Error: 0.38 eV

Bayesian Error Estimation Functionals (BEEF)

- Density Functional Theory
 - Predictive power but many different approximations to the xc-functional.
 - Reliability evaluated based on experience from previous investigations or maybe apply several different functionals. Need for systematic approach.
 - The reliability depends on both functional and investigated property.
 - PBEsol better than RPBE for lattice constants
 - RPBE better than PBEsol for chemisorption energies

Bayesian Error Estimation Functionals (BEEF)

- Exchange-correlation functionals fitted to experimental and high-quality computational data
- Different levels: BEEF(GGA), BEEFvdW (GGA+vdW), mBEEF, mBEEF-vdW
- Provides probability distribution of functionals – ensemble
- Error bars obtained from ensemble

Approach for insufficient models i.e. models which cannot fit the data points

 2π

$$P(a|D) \propto \exp(-C(a)/T), \quad C(a) = \sum_{n} (y_n - y_n(a))^2$$
Effective temperature given
by the best-fit cost function:
$$T = \frac{2C_0}{N_p}$$
Insufficient model: 3rd order
polynomial fit to a sine function
$$Mith this "temperature" the average fluctuations fororedicted points in the database equal the actual deviations.Derivable from max-entropy principle.
$$\left\langle \sum_{n} \delta y_n^2 \right\rangle = \sum_{n} (y_n - y_n(a_{\text{best-fit}}))^2$$
Frederiksen, Jacobsen, Brown, Sethna PRL 93, 165501 (2004)$$

Mortensen, Kaasbjerg, Frederiksen, Nørskov, Sethna, Jacobsen, Phys. Rev. Lett. 95, 216401 (2005).

Mortensen, Kaasbjerg, Frederiksen, Nørskov, Sethna, Jacobsen, Phys. Rev. Lett. 95, 216401 (2005).

Error estimation

Stepping up the ladder: Larger databases and more functional forms

BEEF-vdW

$$E_{xc} = \sum_{m} a_m E_m^{GGA-x} + \alpha_c E^{LDA-c} + (1 - \alpha_c) E^{PBE-c} + E_{vdW-DF2}^{nl-c}$$

Expansion of enhancement factor (density gradient)

mBEEF:

$$E_{xc} = \sum_{m,n} a_{mn} E_{mn}^{mGGA-x} + E^{PBEsol-c}$$

mBEEF-vdW

Expansion of enhancement factor (density gradient, kinetic energy density)

$$E_{xc} = \sum a_{mn} E_{mn}^{mGGA-x} + \alpha_c E^{LDA-c} + \alpha_{PBEsol} E^{PBE-c} + \alpha_{nl-c} E_{vdW-DF2}^{nl-c}$$

BEEF-vdW: m,n

Wellendorff, Lundgaard, Møgelhøj, Petzold, Landis, Nørskov, Bligaard, Jacobsen, Phys. Rev. B 85, 235149 (2012).

mBEEF:

Wellendorf, Lundgaard, Jacobsen, Bligaard, J. Chem. Phys. 140, 144107 (2014)

mBEEF-vdW:

K. T. Lundgaard, J. Wellendorff, J. Voss, K. W. Jacobsen, and T. Bligaard, *Phys. Rev. B.* **93**, 235162 (2016). Petzold, Bligaard, and Jacobsen, Top Catal 55, 402 (2012).

Functional comparison on mBEEF-vdW **training** sets

Overall	Chemisorption	Solid	Solid	Gas phase	Non-covalent
geometric	energies on	cohesive	lattice	reaction	bonding
mean	TM surfaces	energies	constants	energies	

(mBEEF-vdW: K. T. Lundgaard, J. Wellendorff, J. Voss, K. W. Jacobsen, and T. Bligaard, *Phys. Rev. B.* **93**, 235162 (2016).)

Examples of error estimation

- Copper cohesive energy vs structural energy difference
 - Energy errors can be <u>very</u> different
- The CO puzzle
 - When error bars show we don't know
- Compound formation energies
 - Comparing models
- Water splitting ABS₃ compounds
 - Error bars in practice
- Ammonia synthesis
 - When error bars show we know more than one could expect

Fcc-bcc structural energy difference

bcc

Mortensen, Kaasbjerg, Frederiksen, Nørskov, Sethna, Jacobsen, Phys. Rev. Lett. 95, 216401 (2005).

The CO puzzle

Hexagonal surfaces at 25% coverage

Binding energy at hollow site vs atop site

Expt: Pd(111) hollow site; the others atop

RPA calcuations by Schimka et al. Nature Materials **9**, 741 (2010).

Compound formation energies Errors and error estimation

FERE: Stevanovic, Lany, Zhang, Zunger, Phys. Rev. B, 85, 115104 (2012)

257 binary compounds with known heats of formation

Fitting of Elemental Reference Energies:

$$\Delta \mathbf{H}_f(\mathbf{A}_{n_1}\mathbf{B}_{n_2}\ldots) = \mathbf{E}_{\text{tot}}(\mathbf{A}_{n_1}\mathbf{B}_{n_2}\ldots) - \sum_i n_i \ \mu_i^0$$

Fitting parameters

DTU

Test set of 24 binary and ternary compounds:

	PBE	PBE-FERE	mBEEF	mBEEF-FERE
MAE	0.24 eV	0.12 eV	0.12 eV	0.09 eV

Pandey, Jacobsen, *Phys. Rev. B*, **91**, 235201 (2015)

Water splitting sulfide perovskites Screening funnel

Sulfide perovskites Stability

Energy Environ. Sci., 10, 2579 (2017)

Ammonia synthesis

 $N_2 + 3H_2 \rightarrow 2NH_3$

Descriptors: Adsorption energies and reaction barriers Rates depend exponentially on barriers. **Can we predict anything at all?**

Vojvodic, Medford, Studt, Abild-Pedersen, Khan, Bligaard, and Nørskov, Chemical Physics Letters, 598, 108 (2014)

Ammonia synthesis: Turn-over-frequency

Calculations including error bars.

BEEF-vdW

Limitations

- Functional and error estimates depend on model (GGA) and database (solids and molecules)
- Problems if
 - a property is not represented in the database
 - model is unable to describe the property at all
 - vd-Waals interactions with GGA

The End!